
Optical dichroism: E1–M1 integral relations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 1969

(http://iopscience.iop.org/0305-4470/39/8/013)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 03/06/2010 at 05:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 1969–1978 doi:10.1088/0305-4470/39/8/013

Optical dichroism: E1–M1 integral relations

Ivan Marri1, Paolo Carra2,3 and C M Bertoni1

1 S3 INFM-CNR and Physics Department, University of Modena and Reggio Emilia,
41100 Modena, Italy
2 European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cédex, France
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Abstract
The present paper discusses optical dichroism in noncentrosymmetric systems.
The cases of circular and linear polarizations are considered. Integrated spectra
are interpreted using effective two-electron operators, which are derived within
a localized (atomic) model. As a consequence, our theory is not suitable
for quantitative predictions; nevertheless, it identifies microscopic origins of
natural, nonreciprocal and Jones’ dichroisms.

PACS numbers: 78.40.−q, 78.20.Ek, 78.20.Fm

1. Introduction

In condensed-matter systems, effects of space-inversion symmetry breaking can be described
by space-odd order parameters, which are specified using spin and orbital irreducible tensors.
They are investigated by a variety of spectroscopies ranging from optics to x rays.

X-ray experiments, primarily absorption with its various forms of dichroism, are
performed with synchrotron radiation, exploiting photon polarization and energy tunability.
Two features characterize these inner-shell x-ray spectroscopies: crystal-site selectivity (from
energy tuning) and angular-momentum resolution (from selection rules). Sensitivity to space-
odd order parameters is obtained by picking out an interference between electric-dipole and
electric-quadrupole excitations (Alagna et al 1998, Goulon et al 1998, Natoli et al 1998,
Goulon et al 2000, 2002). Recording a non-vanishing E1–E2 spectrum thus requires an
ordered structure. Using an atomic approximation, theoretical work has identified a set of
physical observables, which are probed by these experiments (Carra et al 2003, Marri and
Carra 2004).

In the optical region, several phenomena arising from the breaking of space inversion
have also been observed:
3 Dr Paolo Carra unexpectedly died on 18 October 2005 at the age of 53. The coauthors remember their great friend
and his life dedicated to Science.

0305-4470/06/081969+10$30.00 © 2006 IOP Publishing Ltd Printed in the UK 1969

http://dx.doi.org/10.1088/0305-4470/39/8/013
mailto:marri@unimo.it
mailto:carra@esrf.fr
mailto:bertoni@unimo.it
http://stacks.iop.org/JPhysA/39/1969


1970 I Marri et al

• Natural optical activity, i.e., a difference in absorption between right- and left-circularly
polarized photons, or rotation of the polarization plane, in a nonmagnetic system (Barron
1982).

• Magnetochiral anisotropy, i.e., a shift in the refractive index (or dichroism in the
absorption coefficient) of a chiral medium, when the photon beam is collinear with an
external applied magnetic field; the sign of the shift changes when the relative direction
between field and beam is inverted, or when, for a given relative direction, one switches
from one chiral medium to its enantiomer (Wagnier and Meier 1982).

• Magnetoelectric dichroism, observed in magnetoelectric crystals with or without the
application of external electric and magnetic fields (Jones 1948, Wagnier and Meier 1982,
Krichevtsov et al 1996, Roth and Rikken 2000 and 2002, Jung et al 2004).

These optical effects are mainly ascribed to an interference between electric-dipole and
magnetic-dipole (E1–M1) excitations. Nonvanishing spectra can thus be recorded also in
disordered systems.

The aim of this paper is to report an analytic study of the E1–M1 absorption cross section,
as a function of photon polarization and wave vector. Circular and linear dichroism and
anisotropies will be analysed. Our theory is based on tensor methods (Racah calculus), which
are implemented within a single-ion model. For inner-shell excitations, corrections to this
atomic approximation have been calculated using orthonormal LMTOs as a one-particle basis
for electron band states (Benoist et al 2000). In this framework, integrated dichroic spectra
are given by a one-particle atomic contribution (leading order) followed by a series of terms,
which can be expressed in the form of energy moments of the valence band. By leaving a
localized core hole, x-ray absorption selects a specific site in the solid. A local process is
thus expected to control the excitation. Corrections are small, in general, and the atomic
approximation works well. This is not the case for optical excitations. Visible and ultraviolet
light probe the sample on the length scale from 1 µm to a few nanometres. The process is
obviously non-local, rendering the single-ion model irrealistic for quantitative predictions.

On the other hand, the problem of identifying the microscopic origin of optical dichroism
in noncentrosymmetric systems remains and multi-site analytical calculations appear to be
out of reach at present. We have thus performed a single-site analysis. As explained in the
remaining sections of this paper, this local approximation yields integrated spectra as a linear
combination of (one-site) two-particle effective electron operators with a well-defined physical
meaning, thus elucidating the microscopic nature of optical parity-breaking phenomena.

2. E1–M1 absorption cross section

We consider the absorption cross section

σ ε
E1–M1(ω) = 2π2αh̄ω

mc


∑

ι,ι′,f

〈g|ε∗ · rι|f 〉〈f |(ε × k̂) · lι′ |g〉 + c.c.




(1)
× δ(Ef − Eg − h̄ω),

which selects the E1–M1 interference (to leading order) in the p · A interaction between
photons and electrons. Here, h̄ω, k̂ = k/k and ε represent energy, wave-vector direction and
polarization of the photon; |g〉 and |f 〉 denote ground and final states of the electron system,
with energies Eg and Ef , respectively; electrons are labelled by ι and ι′; α = e2/h̄c and
l = h̄−1L stands for a dimensionless orbital angular momentum.
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Our study centres on the integrated intensity

�E1–M1(ε) =
∫

σ ε
E1–M1

h̄ω
d(h̄ω), (2)

where integration is over a finite energy interval, which is relevant for optical spectra4.
Equation (2) expands into a linear combination of pairs of tensors of increasing rank, r = 0, 1
and 2. Each pair is given by the scalar product of a geometrical factor (a wave-vector and
polarization response) and the ground-state expectation value of an effective electron operator.
We will now proceed to the derivation of this expansion.

Our method hinges on the second-quantization formalism. We introduce the fermionic
field

�(r) =
∑
lλσ

alλσ ψlλσ (r), (3)

where alλσ annihilates a valence electron, which is labelled by orbital quantum number l, λ

and spin σ . Valence states are identified by uncoupled spin-orbital wave functions

ψlλσ (r) = φl(r)Ylλ(n̂)χσ , (4)

with n̂ = r/r . In this one-electron basis, equation (1) takes the form

σ ε
E1–M1 = 2π2αh̄ω

mc


∑

f

∑
lλσ

l′λ′σ ′

∑
l1λ1σ1
l2λ2σ2

〈ψl′λ′σ ′(r)|ε∗ · r|ψlλσ (r)〉

× 〈ψl1λ1σ1(r)
∣∣(ε × k̂) · l

∣∣ψl2λ2σ2(r)
〉〈g|a†

l′λ′σ ′alλσ |f 〉

×〈f |a†
l1λ1σ1

al2λ2σ2
|g〉 + c.c.


 δ(Ef − Eg − h̄ω), (5)

where l′ = l ± 1. We insert equation (5) into equation (2) and apply the Wigner–Eckart
theorem. After some algebra, we find

�E1–M1(ε) = 8i
√

2π2α

mc


∑

r
αβρ

∑
l1λ1λ2
lλl′λ′

R1
ll′R

0
l1l1

(−1)ρ[(2l + 1)l1(l1 + 1)]
1
2

×Cl′0
l0;10C

rρ

1α;1β

(
Sr

−ρ(ε, ε∗, k̂)
Cl′λ′

lλ;1αC
l1λ1
l1λ2;1β√

2l′ + 1
〈g|a†

l′λ′alλa
†
l1λ1

al1λ2
|g〉

× (−1)r+1Qr
−ρ(ε, ε∗, k̂)

C
l1λ2
l1λ1;1αClλ

l′λ′;1β√
2l + 1

〈g|a†
l1λ2

al1λ1
a
†
lλal′λ′ |g〉

) , (6)

where the radial integrals are given by RL
ll′ = ∫∞

0 drφl(r)r
L+2φl′ ; C

cγ

aα;bβ denotes a Clebsch–
Gordan coefficient. The geometrical factors Sr

−ρ and Qr
−ρ are defined by

Sr
−ρ(ε, ε∗, k̂) =

∑
qνµ
pκ

√
3(2p + 1)

{
1 1 p

1 r 1

}
C

pκ

1−q;1νC
r−ρ

pκ;1µε∗
−qεν k̂µ (7)

4 The energy range of interest covers intra-band transions in the optical region. In our derivation, the valence states
j± = l ± 1

2 are assumed to be degenerate. Absorption is sensitive to purely orbital electronic properties in this case.
Spin-dependent terms are included by extending the theory according to the method of Marri and Carra (2004).
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with

Qr (ε, ε∗, k̂) = Sr (ε, ε∗, k̂), when ε is real, (8)

and

Qr (ε, ε∗, k̂) = Sr(ε∗, ε, k̂) when ε is complex. (9)

Equation (6) provides the required expansion of the integrated intensity into a linear
combination of coupled tensors5. Selection of appropriate photon polarization and wave
vector affords a study of integrated dichroic spectra and their dependence on microscopic
electronic properties of the sample, as described below. (Mathematical details about the
derivation of equation (6) are given in the appendix.)

3. Optical natural circular dichroism

Optical natural circular dichroism (ONCD) measures the difference in absorption between right
(−) and left (+) circularly polarized photons, which are defined by ε± = ∓(i/

√
2)(ε1 ± iε2).

We therefore consider the integrated intensity

�OCND
E1–M1 = �E1–M1(ε

−) − �E1–M1(ε
+)

=
∫

σ ε−
E1–M1 − σ ε+

E1–M1

h̄ω
d(h̄ω), (10)

and work out the corresponding geometrical factors and effective electron operators.
Geometrical factors. Expression (10) contains the combinations

Sr
ρ(ε,

− ε+, k̂) − Sr
ρ(ε

+, ε−, k̂) = − [Qr
ρ(ε,

− ε+, k̂) − Qr
ρ(ε

+, ε−, k̂)
]

≡ T r
ρ (ε−, ε+, k̂)ONCD, (11)

which do not vanish only when p = 1, as inferred from equations (7) and (9). When r = 1,
T 1

OCND ∝ (ε×ε∗)× k̂ = 0, for transverse waves. Only the values r = 0, 2 contribute therefore
to equation (10). Explicitly

T 0
0 (ε−, ε+, k̂)ONCD = i

2√
6
(ε+ × ε−) · k̂ = − 2√

6

and

T 2
ρ (ε−, ε+, k̂)ONCD = i√

2
[ε+ × ε−, k̂]2

ρ.

(Tensor couplings are defined by means of Clebsch–Gordan coefficients: [Up, V q]zη ≡∑
µν C

zη

pµ;qνU
p
µV

q
ν .) Equation (10) can thus be cast in the following form

�ONCD
E1–M1 = i8

√
2π2α

mc

∑
r

ll′l′′

R1
ll′R

0
l′′l′′
√

(2l + 1)l′′(l′′ + 1)

(12)
Cl′0

l0,10

∑
ρ

(−1)ρT r
−ρ(ε

−, ε+, k̂)ONCD〈g|F r
ρ (ω)

l,l′,l′′
ONCD|g〉,

5 Only totally symmetric representations of the transition operator will contribute to �E1–M1(ε) (Carra and Thole
1994).
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with

F r
ρ (ω)

l,l′,l′′
ONCD =

∑
αβ

λλ′λ1λ2

C
rρ

1α,1β

[
Cl′λ′

lλ,1αC
l′′λ1
l′′λ2,1βa

†
l′λ′alλa

†
l′′λ1

al′′λ2√
2l′ + 1

+
C

l′′λ2
l′′λ1,1αClλ

l′λ′,1βa
†
l′′λ2

al′′λ1
a
†
lλal′λ′√

2l + 1

]
, (13)

which identifies the electron operators in �OCND
E1–M1.

Effective electron operators. We will now show that equation (13) can be rewritten in
terms of two-particle effective electron operators (irreducible tensors). These tensors are
constructed using the following basic operators: the angular momentum l; the shift operators
A = nf1(N0) + ∇�f2(N0) and A†, with ∇� = −in × l, f1(N0) = (

N0 − 1
2

)
f2(N0) and

f2(N0) = √
(N0 − 1)/N0; and N0, which is defined by N0|lm〉 = (

l + 1
2

)|lm〉, with |lm〉
being a spherical harmonic. When acting onto |lm〉, A and A† change l into l − 1 and
l + 1, respectively. We will also consider the linear combinations: A− = i(A − A†)

√
2 and

A+ = i(A + A†)
√

2. The vector n identifies the direction of electric polarization.
Within this formalism, we find

F r
ρ (ω)

l,l′=l−1,l′′
ONCD =

√
2l′′ + 1

〈l′‖A‖l〉〈l′′‖l‖l′′〉
∑
αβ

∑
λλ′λ1λ2

C
rρ

1α;1β

× [〈l′λ′|Aα|lλ〉a†
l′λ′alλ〈l′′λ1|lβ |l′′λ2〉a†

l′′λ1
al′′λ2

+ h.c.
]
, (14)

for the case l′ = l − 1. A similar expression is derived for l′ = l + 1. Defining space-odd
one-electron operators∑

ι

[
Or

ι,ρ

]l,l′ =
∑
λλ′

〈l′λ′|Or
ρ |lλ〉a†

l′λ′alλ + h.c., (15)

we couple them and form two-particle irreducible tensors, so that

F r
ρ (ω)

l,l′=l−1,l′′
ONCD =

√
2l′ + 1

〈l′‖A‖l〉〈l′‖l‖l′〉
∑
ιι′

(
[Aι, lι′ ]rρ − [lι′ , Aι]

r
ρ

)l,l′=l−1,l′′
. (16)

Again, a similar expression for l′ = l + 1 is obtained. Using the following one-particle
relations (Carra 2001)

〈l′m′|iA−|lm〉 =
√

(2l + 1)(2l′ + 1)

l + l′ + 1

1√
2
〈l′m′|n × l − l × n|lm〉 (17)

and (Carra et al 2003)

�L = n × l − l × n
2

= 1

2

1√
N0

[N0, A−]+
1√
N0

, (18)

A+ =
√

N0n
√

N0, (19)

we finally obtain

�ONCD
E1–M1 = �E1–M1(ε

−) − �E1–M1(ε
+) = −8

√
2π2α

mc

∑
al,l′R

1
ll′R

0
l′′l′′

×


 1√

3
T 0

0 (ε−, ε+, k̂)ONCD

∑
ιι′

ι�=ι′

〈g|�L
ι · lι′ |g〉
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−
∑

ρ

(−1)ρT 2
−ρ(ε

−, ε+, k̂)ONCD

∑
ιι′

〈g|[�L
ι , lι′

]2
ρ
|g〉


 , (20)

with

al,l′ = 2(l′ − l)

l + l′ + 1
.

The vector operator �L is known as (one-particle) orbital anapole.
Equation (20) is our main result for natural circular dichroism in the optical region. It

provides a microscopical interpretation of integrated ONCD spectra in terms of two effective
electron operators: an orbital pseudoscalar and an orbital pseudodeviator. Note that these
tensors are two-particle electron operators, as they stem from valence excitations. This should
be contrasted with x-ray natural dichroism where one-electron properties are probed (Carra
et al 2003). The orbital pseudoscalar can distinguish between enantiomeric and
nonenantiomeric systems; indeed, it averages to zero when the permitted point group contains
a mirror plane as a symmetry operation6. The orbital pseudodeviator represents the two-
particle generalization of the rank-2 tensor probed by x-ray natural dichroism. A one-
particle pseudodeviator can be viewed as the space-odd analogue of a charge quadrupole. In
equation (20), both electron operators have polar symmetry, i.e., they are space odd and time
even.

4. Optical non-reciprocal linear dichroism

This section derives an integral relation for E1–M1 optical nonreciprocal linear dichroism
(ONLD), which measures the difference in absorption between two different linearly-polarized
photons, denoted by ε′ and ε′′7. We consider the expression

�ONLD
E1–M1 =

∫
σ ε′

E1–M1 − σ ε′′
E1–M1

h̄ω
= �E1–M1(ε

′) − �E1–M1(ε
′′) (21)

and, as in the previous case, we will determine the geometrical factors and effective electron
operators.

Geometrical factor. Equation (21) contains the terms

Sr
ρ(ε

′, k̂′) − Sr
ρ(ε

′′, k̂′′) = Qr
ρ(ε

′, k̂′) − Qr
ρ(ε

′′, k̂′′)

= T r
ρ (ε′, k̂′, ε′′, k̂′′)ONLD. (22)

Only the cases r = 1, 2 contribute to T r(ε′, k̂′, ε′′, k̂′′)ONLD. (See equations (7) and (8).) We
find

T 1
ρ (ε′, k̂′, ε′′, k̂′′)ONLD = 1

3
(k̂′ − k̂′′)ρ +

√
15

6

(
[[ε′, ε′]2, k̂′]1

ρ − [[ε′′, ε′′]2, k̂′′]1
ρ

)
= 1

2
(k̂′ − k̂′′)ρ,

independent of polarization, and

T 2
ρ (ε′, k̂′, ε′′, k̂′′)ONLD = −

√
3

2

(
[[ε′, ε′]2, k̂′]2

ρ − [[ε′′, ε′′]2, k̂′′]2
ρ

)
.

6 The two-electron pseudoscalar does not possess a one-electron counterpart, as ΩL
ι · lι = 0.

7 Usually, experiments are performed using two mutually perpendicular linearly-polarized states. Here we treat the
general case of two linearly-polarized states making an arbitrary angle.
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Effective electron operators. In equation (21), the electronic operators read

F r
ρ (ω)

l,l′,l′′
ONCD =

∑
αβ

λλ′λ1λ2

C
rρ

1α,1β

[
Cl′λ′

lλ,1αC
l′′λ1
l′′λ2,1β〈g|a†

l′λ′alλa
†
l′′λ1

al′′λ2
|g〉√

2l′ + 1

+ (−1)r+1
C

l′′λ2
l′′λ1,1αClλ

l′λ′,1β〈g|a†
l′′λ2

al′′λ1
a
†
lλal′λ′ |g〉√

2l + 1

]
. (23)

Rewriting F r
ρ (ω)

l,l′,l′′
ONCD in the shift-operator framework of section 3, we find

�ONLD
E1–M1 = −8π2α

mc

∑
ll′l′′

R1
ll′R

0
l′′l′′(−1)ρ

[
T 1

−ρ(ε
′, k̂′, ε′′, k̂′′)ONLD

×
∑
ιι′

〈g|(nι × lι′ − lι′ × nι)ρ |g〉

+ i2
√

2T 2
−ρ(ε

′, k̂′, ε′′, k̂′′)ONLD

∑
ιι′

〈g|[nι, lι′ ]2
ρ |g〉

]
. (24)

The foregoing equation provides the required integral relation for ONLD. It accounts for
two effects; namely, magnetoelectric anisotropy and Jones’ dichroisms. This distinction is
somehow historical; both phenomena arise from magnetoelectric configurations in the sample,
which favour E ⊥ B or E ‖ B (or antiparallel), respectively8.

Magnetoelectric anisotropy is a polarization-independent phenomenon which results from
the change in the refractive index (or in the absorption coefficient) as a function of light
propagation with respect to the product E × B. It reaches its largest magnitude when the
signal is recorded with the light beam parallel and antiparallel to E × B; i.e., k̂′ = −k̂′′ in
equation (24). T 2(ε′, k̂′, ε′′, k̂′′)ONLD = 0, in this case, and only the rank-1 tensor needs to
be taken into account. The effect vanishes when E ‖ B (or antiparallel). On the basis of
symmetry arguments, the effect was predicted in all media whose refractive index contains a
contribution of the form k̂ · E×B (Rikken et al 2002). In our integral relation, magnetoelectric
dichroism is described by the two-particle orbital anapole:

∑
ιι′(nι × lι′ − lι′ × nι). This term

can be spontaneous or induced by applying external electric and magnetic fields. Equation (21)
yields a microscopic interpretation of the magnetoelectric effect recently observed GaFeO3,
a polar ferrimagnetic crystal (Jung et al 2004). GaFeO3 (and in general all magnetoelectric
oxides of the type Ga2−xFexO3) is an example of a compound where spontaneous polarization
and magnetization coexist. Below Tc (∼ 205) the space and magnetic point groups of this
crystal are Pc21n and m′2′m, respectively (Kubota et al 2004). Note that m′2′m permits a
nonvanishing two-particle orbital anapole, i.e. the effective operator responsible for the effect
according to our theory.

Predicted in 1948, again on the basis of symmetry arguments (Jones 1948), Jones’
dichroism and birefringence were observed for the first time in 2001 (Roth and Rikken
2002). The effects are permitted in a variety of systems and compounds; for example, in
uniaxial crystals, or in isotropic media when external electric and magnetic fields are applied.
They are due to a difference in the imaginary and real parts of the refractive index, �n, for
linearly-polarized light at angles θ and −θ with the spontaneous magnetization (or applied
external field). Jones’ effects are largest when E ‖ B (or antiparallel) and vanish for E ⊥ B.
As depicted in figure 1, consider B = B ẑ and x̂ such that E = Ex x̂ + Ezẑ. Light propagates

8 These electric and magnetic fields, denoted by E and B respectively, can be either spontaneous, i.e., naturally
present in the sample, or externally applied.
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x

y

kε

B
E

θ

z

Figure 1. Experimental configuration for detecting Jones’ dichroism.

along ŷ with linearly polarization at an angle θ with respect to ẑ, i.e. ε(θ) = sin θ x̂ + cos θ ẑ.
In this case (Budker and Stalnaker 2003),

�n ∼ nθ − n−θ ∝ sin θ cos θE · B, (25)

which attains a maximum when θ = 45◦ and E ‖ B (or antiparallel). According to our integral
relation, equation (24), Jones’ dichroism is controlled by a two-particle orbital magnetic
quadrupole:

∑
ιι′ [nι, lι′ ]2. [T 1(ε′, k̂′, ε′′, k̂′′)ONLD = 0, for k̂′ = k̂′′ = kŷ, ε′ = ε(θ) and

ε′′ = ε(−θ).] As has been demonstrated (Carra 2004), in the one-particle case, a simple
Hamiltonian can be found whose ground state is an eigenstate of a magnetic quadrupole; such
a ground state possesses an electric and a magnetic moment in a parallel configuration. Note
that, in the configuration of figure 1, T 2

0 (ε′, k̂′, ε′′, k̂′′)ONLD ∝ iε0 · (ε × k̂)0 = i sin θ cos θ ,
correctly reproducing the angular dependence of Jones’ dichroism. In equation (24), both
electron operators are space and time odd; they have therefore magnetoelectric symmetry.

5. Conclusion

The current paper has derived E1–M1 integral relations for optical spectroscopies in
noncentrosymmetric systems. Within a single-ion model, with hybridized valence states, we
have applied angular-momentum-recoupling techniques to express integrated spectra as linear
combinations of ground-state expectation values of two-particle orbital electronic tensors.
Circular and linear dichroisms have been studied, and related to polar and magnetoelectric
properties, respectively, of the sample.

As stressed in the introduction, our local approximation is not suitable for quantitative
predictions in the optical region. However, by identifying on-site couplings between light and
electrons, in the case of parity breaking, our results should help clarifying the microscopic
origin of E1–M1 dichroism. For this purpose, our integral relation have been used to interpret
several optical-dichroism experiments in noncentrosymmetric systems.
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Appendix

The current appendix discusses algebraic details, which enter the derivation of equation (6).
By resorting to spherical components, e.g.

ε · r =
∑

q

(−1)qεqr−q and (ε × k̂)q = −i
√

2
∑
µν

C
1q

1µ;1νεµk̂ν, (A.1)

Equation (5) can be written as

σ ε
E1–M1(ω) = −i

2
√

2π2αh̄ω

mc


∑

f

∑
lλσ

l′λ′σ ′

∑
l1λ1σ1
l2λ2σ2

∑
qq ′
µν

(−1)q+q ′
δσσ ′δσ1σ2

×R1
ll′R

0
l1l2

ε∗
−qC

1−q ′
1µ;1νεµk̂ν

Cl′λ′
lλ;1qC

l1λ1
l2λ2;1q ′ 〈l′‖r‖l〉〈l1‖l‖l2〉√
(2l′ + 1)(2l1 + 1)

×〈g|a†
l′λ′σ ′alλσ |f 〉〈f |a†

l1λ1σ1
al2λ2σ2

|g〉 + c.c.


 δ(Ef − Eg − h̄ω), (A.2)

where the Wigner–Eckart theorem has been applied to the matrix elements 〈l′λ′|rq |lλ〉 and
〈l1λ1|lq ′ |l2λ2〉. Implementing the identity

∑
rρ C

rρ

1q;1q ′C
rρ

1α;1β = δα,qδβ,q ′ , we then consider∑
qq ′
µν

(−1)q+q ′
C

1−q ′
1µ;1νC

l′λ′
lλ;1qC

l1λ1
l2λ2;1q ′ε

∗
−qεµk̂ν

=
∑
qq ′µν
αβrρ

(−1)r+ρC
r−ρ

1−q;1−q ′C
rρ

1α;1βC
1−q ′
1µ;1νC

l′λ′
lλ;1αC

l1λ1
l2λ2;1βε∗

−qεµk̂ν (A.3)

and apply the recoupling transformation∑
q ′

C
1−q ′
1µ;1νC

r−ρ

1−q;1−q ′ =
∑
pκ

(−1)r+1
√

3(2p + 1)

{
1 1 p

1 r 1

}
C

pκ

1−q;1µC
r−ρ

pκ;1ν . (A.4)

Equation (A.2) takes therefore the form

σ ε
E1–M1(ω) = i

2
√

2π2αh̄ω

mc


∑

f

∑
lλσ

l′λ′σ ′

∑
l1λ1σ1
l2λ2σ2

∑
qµνα
βrρpκ

(−1)ρδσσ ′δσ1σ2

×R1
ll′R

0
l1l2

√
3(2p + 1)

{
1 1 p

1 r 1

}
C

pκ

1−q;1µC
r−ρ

pκ;1νC
rρ

1α;1βCl′λ′
lλ;1αC

l1λ1
l2λ2;1β

× ε∗
−qεµk̂ν

〈l′‖r‖l〉〈l1‖l‖l2〉√
(2l′ + 1)(2l1 + 1)

〈g|a†
l′λ′σ ′alλσ |f 〉〈f |a†

l1λ1σ1
al2λ2σ2

|g〉 + c.c.




× δ(Ef − Eg − h̄ω), (A.5)

Defining the geometric factors Sr and Qr as in equations (7)–(9), we have

σ ε
E1–M1(ω) = i

2
√

2π2αh̄ω

mc



∑
f

∑
lλσ

l′λ′σ ′

∑
l1λ1σ1
l2λ2σ2

∑
αβ
rρ

(−1)ρδσσ ′δσ1σ2
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×R1
ll′R

0
l1l2

C
rρ

1α;1β

[
Sr

−ρ(ε
∗, ε, k̂)

〈l′‖r‖l〉〈l1‖l‖l2〉√
(2l′ + 1)(2l1 + 1)

Cl′λ′
lλ;1αC

l1λ1
l2λ2;1β

×〈g|a†
l′λ′σ ′alλσ |f 〉〈f |a†

l1λ1σ1
al2λ2σ2

|g〉 + (−1)rQr
−ρ(ε

∗, ε, k̂)

× 〈l2‖l‖l1〉〈l‖r‖l′〉√
(2l + 1)(2l2 + 1)

Clλ
l′λ′;1βC

l2λ2
l1λ1;1α〈g|a†

l2λ2σ2
al1λ1σ1

|f 〉〈f |a†
lλσ al′λ′σ ′ |g〉

]


× δ(Ef − Eg − h̄ω). (A.6)

Finally, equation (6) is obtained from equation (A.5) by integrating over energy with use of∑
f |f 〉〈f | = 1 and inserting well-known results for the reduced matrix elements.
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